(-)-TRANS-7(S)-METHOXYTETRADEC-4-ENOIC ACID AND RELATED AMIDES FROM THE MARINE CYANOPHYTE LYNGBYA MAJUSCULA

JOHN H. CARDELLINA II, DEMETRIOS DALIETOS, FRANZ-JOSEF MARNER, JON S. MYNDERSE and RICHARD E. MOORE

Department of Chemistry, University of Hawaii, Honolulu, HI 96822, U.S.A.

(Revised received 12 June 1978)

Key Word Index—Lyngbya majuscula; Oscillatoriaceae; blue-green alga; ()-trans-7(S)-methoxytetradec-4-enoic acid; malyngamides A, B and C.

Abstract—(-)-trans-7(S)-Methoxytetradec-4-enoic acid and the related amides, malyngamides A, B and C, were found as constituents of shallow-water varieties of the marine blue-green alga Lyngbya majuscula.

INTRODUCTION

In our continuing studies of marine Lyngbya [1, 2] we find that (-)-trans-7(S)-methoxytetradec-4-enoic acid (1) is a major constituent in the lipid extracts of most shallow-water varieties of L. majuscula. Also present are various amides of 1, 3 of which we have partially characterized and named malyngamides A, B, and C. Compound 1 and amides of 1 are not constituents of a deepwater variety of this blue-green alga.

RESULTS AND DISCUSSION

Extraction of the wet or freeze-dried, shallow-water variety of L. majuscula with acetone followed by gel filtration and absorption chromatography of the extract produced an oily acid. ¹³C NMR data showed that this compound had 15 carbons and 27 nonexchangeable hydrogens. One carbon was in a carboxylic acid group, two were olefinic methines in a 1,2-disubstituted double bond, one was a methine singly-bonded to oxygen, nine were methylenes and two were methyl carbons with one of them in a methoxyl group. The methoxyl group had to be attached to C-7 of a linear C_{14} carboxylic acid and the double bond had to be located between C-7 and the carboxylic acid group since the high resolution MS showed α -cleavage ions at m/e 143.14345 ($C_9H_{19}O^+$) and

157.08736 ($C_8H_{13}O_3^+$). Proton decoupling experiments on the methyl ester (see Experimental) suggested that the double bond was separated by one carbon from C-7 and by two carbons from the carboxylic acid group and the IR spectrum indicated that the geometry of the double bond was trans (970 cm⁻¹). The acid was therefore trans-7-methoxytetradec-4-enoic acid (1). The identification was confirmed by ozonolysis of 1 to give 3-methoxydecanoic acid (2).

The optical rotation of 2, $[\alpha]_D$ +8.2 in CHCl₃, was comparable in magnitude but opposite in sign to the optical rotation of 3(R)-methoxybutanoic acid, $[\alpha]_D$ -11.6° (neat) [3] and 3(R)-methoxynonanoic acid. $[\alpha]_D - 7.3^\circ$ in CHCl₃, obtained by methylation of ricinoleic acid with methyl iodide and sodium hydride in DMF followed by ozonolysis. This showed that compound 2 had the S configuration at C-3 and 1 therefore the S configuration at C-7. To secure the assignments rigorously, 1 was demethylated with boron trifluoride and ethanethiol to trans-7(S)-hydroxytetradec-4-enoic acid (3) which had an $[\alpha]_D$ +2.5° in CHCl₃. By comparison a commercial sample of ricinelaidic acid (where C-12 is R) showed an $\left[\alpha\right]_{D}$ -2.1° in CHCl₃. Ozonolysis of 3 gave 3(S)-hydroxydecanoic acid (4) which had an $[\alpha]_D$ +17.5° in CHCl, that was intermediate in size but opposite in sign to those of 3(R)-hydroxynonanoic acid and 3(R)-hydroxydodecanoic acid in CHCl, (Table 1). 3(S)-Hydroxynonanoic acid (5) is reported to have $[\alpha]_D$ +19.8° in CHCl₃ [6]. In EtOH, 4 had $[\alpha]_D$ -16.6° compared with $[\alpha]_D$ -3.4° for 5 [6] and $[\alpha]_D$ +3.2° for 3(R)-hydroxynonanoic acid (Table 1). We expected 4 to have only a slightly higher levorotatory $[\alpha]_D$ than 5 in EtOH. No explanation can be made at this time for the

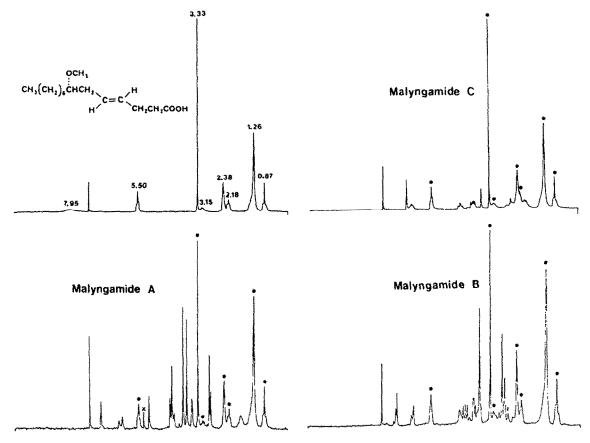


Fig. 1, 100 MHz PMR spectra of trans-7(S)-methoxytetradec-4-enoic acid (1) and malyngamides A, B and C in CDCl₃. The signals in the spectra of malyngamides A, B, and C corresponding to the trans-7(S)-methoxytetradec-4-enyl moiety are indicated by •. The singlet at lowest field (δ 7 25) in the spectra of malyngamides A, B and C is residual CHCl₃.

discrepancy. These additional studies, however, clearly indicated that 1 has the 7S configuration.

Also present in the lipid extracts of shallow-water varieties of Lyngbya majuscula were trans-7(S)- methoxytetradec-4-enoic amides. In two varieties of this seaweed from Oahu, Hawaii (Kahala Beach and Kailua), we isolated a neutral, non-crystalline, optically active, chlorine-containing compound, malyngamide A. which exhibited absorptions in its PMR spectrum (Fig. 1) that were superimposable on those of 1. Malyngamide A, which appeared to have the elemental formula C29H45-N₂O₂Cl on the basis of MS, could be readily hydrolysed to 1. Since the 1R spectrum of malyngamide A showed only amide-type carbonyl absorption, I most likely arose from cleavage of an amide functionality in malyngamide A. In the variety from Kailua, malyngamide A was accompanied by a closely-related compound, malyngamide B (C28H45N2O6Cl suggested by high resolution MS of fragment ions at m/e 143 and 313), which also showed PMR signals that coincided with those of 1 (Fig. 1). In another shallow-water variety of L. majuscula from Fanning Island, we isolated a completely different compound, malyngamide C, of composition C₂₄H₃₈NO₅-Cl. Malyngamide C also exhibited signals in its PMR spectrum that were the same as those of 1 (Fig. 1), except for the broad signal assigned to the C-2 and C-3 methylene protons which had shifted upfield in the PMR spectrum of malyngamide C. Acid hydrolysis of malyngamide C, however, led to 1.

A deep-water variety of L. majuscula from Enewetak did not contain 1 or amides of 1. The lipid extract contained two compounds, malyngamides D and E, which exhibited 1-like absorptions in their PMR spectra, but the diagnostic fragment ion peak at m/e 143, which was intense in the EI mass spectra of 1 and all esters and amides of 1, was absent. Moreover, acid hydrolysis of malyngamide E did not produce 1 but rather a different fatty acid. The PMR spectrum of the new acid, however, strongly suggested that it was a trans-7-methoxyalk-4-enoic acid since it showed signals for the C-2, C-3, C-4.

Table 1. Optical data for R-3-hydroxyalkanoic acids, CH₃-(CH₂)_n-CH(OH)-CH₂-CO₂H

n	[α] ₁	CHCl ₃	Reference
0	-17.3		4"
1	-11	-35°	51
2	I'	– 28 °	5°
5	+3.2"	- 19.6°	6 ^d
8		-16.1	7°

The temperature and concentration are (a) 25° and 12, (b) 25° and 2, (c) 24° and 2, (d) 20° and 5, and (e) 17° and 5.

C-5, C-6 and C-7 protons that were essentially identical with those of 1.

No trans-7-methoxyalk-4-enoic acids or amides were detected in the lipid extract of a L. semiplena from Fanning Island. Compound 1 was found to be a major constituent in a cyanophyte tentatively identified as a Crinalium sp. (Oscillatoriaceae) from Fanning Island. trans-7-Methoxyalk-4-enoic acid and amides, however, were absent in several other specimens of Oscillatoriaceae, i.e. species of Schizothrix, Oscillatoria, Symploca, Phormidium and Spirulina.

Two trans-7-methoxytetradec-4-enoic amides, stylocheilamide and deactylstylocheilamide, have been isolated from the digestive gland of the sea hare Stylocheilus longicauda and proposed to have structures 6 and 7 [8]. The stereochemistry of the ring in 6 and 7 has been determined from X-ray crystallography of a degradation product, but the geometry of the chlorine-substituted double bond and the absolute configurations of the chiral centers remain unknown. Like the toxins associated with this gastropod mollusk [9], amides 6 and 7 appear to be dietary components and may be constituents of a Lyngbya sp.

PMR and ¹³C NMR spectra were obtained at 100 MHz and 25 MHz on a spectrometer equipped with a Fourier transform system. Single frequency off-resonance decoupled ¹³C NMR spectra were determined with the proton decoupler at δ 14. Proton chemical shifts are reported in δ ppm relative to TMS as internal standard. Carbon-13 chemical shifts are reported in δ relative to the solvent, i.e. CDCl₃ (δ = 76.9) or C₆D₆ (δ = 128), as internal standard. Electron impact MS were obtained at 70 eV. Elemental analyses were performed by Chemical Analytical Scrvices, University of California, Berkeley.

Isolation: (A) trans-7(S)-methoxytetradec-4-enoic acid. L. majuscula was collected in shallow water at Kahala Beach, Oahu. The freeze-dried alga (680 g) was extracted twice with CHCl, (PMR inspection of the solvent showed the presence of more EtOH preservative than usual) and twice with MeOH. The combined extracts were evapd and the residual oily solid was soaked with CHCl3-MeOH (3:1) and the mixture filtered. Evapn of the filtrate gave 37 g of a brown oil. The extract (34 g) was chromatographed on 550 g of Si gel with a hexane-CHCl, gradient. The fraction (1.69 g) eluted with 10-20 % CHCl, in hexane was then chromatographed on 100 g of neutral Al₂O₃ with a hexane-CHCl, gradient. The first fraction (206 mg) was an oil, identified as ethyl linolenate on the basis of PMR and MS analyses. The second fraction was also an oil (247 mg). Further purification of 125 mg of fraction 2 on Sephadex LH-20 with MeOH-CHCl₃ (1:1) gave 76 mg of GLC-pure (10% SE-30 on Chromosorb P, 240°) Et trans-7(S)-methoxytetradec-4-enoate as a colorless oil, $[\alpha]_D^{26} - 9^\circ$ (CHCl₃, c 7.3); IR (neat) v_{max} 2920, 2850. 2820. 1735, 970 cm⁻¹: PMR (CDCl₃) δ 5.49 (*m*, 2H), 4.14 (*q*, *J* = 7 Hz, 2H), 3.33 (s, 3H), 3.15 (*m*, 1H), 2.36 (*br* s, 4H), 2.19 (*bt*, 2H), 1.27 (*br* s with low field *sh*, 12H), 1.25 (*t*, *J* = 7 Hz, 3H), 0.88 (*bt*. *J* = 7 Hz, 3H). ¹³C NMR (CDCl₃) δ 172.89 (C=O), 130.27 (=CH), 127.36 (=CH), 80.69, (OCH), 60.17 (OCH₂), 56.38 (OCH₃), 36.30 (CH₂), 34.19 (CH₂), 33.31 (CH₂), 31.81 (CH₂), 29.70 (CH₃), 29.26 (CH₃), 27.94 (CH₂), 25.21 (CH₂), 22.56 (CH₃), 14.20 (CH₃), 14.02 (CH₃): ¹³C NMR (C₆D₆) δ 172.29 (C=O), 130.73 (=CH), ~128.0 (=CH, obscured by solvent peak), 80.97 (OCH), 60.10 (OCH₂), 56.40 (OCH₃), 36.94 (CH₂), 34.47 (CH₂), 33.94 (CH₂), 32.36 (CH₂), 30.33 (CH₂), 29.80 (CH₃), 28.48 (CH₂), 25.84 (CH₂), 23.20 (CH₂), 14.39 (2CH₃); MS *m*/*e* (rel. intensity) 285 (0.2), 284 (0.1, M⁺), 253 (1.5), 239 (1), 207 (17), 185 (10), 143 (77), 111 (55), 97 (40), 83 (37), 69 (100)

A mixture of 20 mg of Et ester and 2 ml of 10% NaOH soln was refluxed for 5 hr, acidified with dil H_3PO_4 and extracted with CH₂Cl₂ to give 18 mg of trans-7(S)-methoxytetradec-4-enoic acid (1, 0.02% of dried alga) as a colorless oil, $[\alpha]_D^{26} = 11.1^{\circ}$ (CHCl₃, c 3.9). IR (CHCl₃) v_{max} 3520, 3410, 2925, 2850, 1715, 970 cm⁻¹; PMR (CDCl₃) δ 7.95 (br, 1H, CO₂H), 5.50 (br t. 2H, C-4 and C-5 methines), 3.33 (s, 3H, OCH₃), 3.15 (br p. 1H, C-7 methine), 2.38 (br, 4H, C-2 and C-3 methylenes), 2.18 (br t, 2H, C-6 methylene), 1.26 (br s with low field sh. 12H, C-8 to C-13 methylenes), 0.87 (br t, 3H, C-14 methyl); ¹³C NMR (C₆D₆) δ 179.08 (C=O), 130.29 (=CH), 127.49 (=CH), 80.98 (OCH), 56.32 (OCH₃), 36.94 (CH₂), 34.13 (CH₂), 33.95 (CH₂), 32.36 (CH₂), 30.25 (CH₂), 29.85 (CH₂), 28.14 (CH₂), 25.85 (CH₂), 23.21 (CH₂), 14.40 (CH₃); MS m/e (rel. intensity) 256 (0.1), 225 (0.1), 207 (0.5), 157 (1), 155 (2), 143 (100), 111 (22), 69 (80), 55 (25), 45 (22); high resolution MS m/e 157.08736 (calcd. for C₈H₁₃O₃, 157.08647), 155.07107 (calcd. for C₈H₁₁O₃, 155.07082), 143.14345 (calcd. for C₉H₁₉O₃: C, 70.3; H, 11.0%).

In another expt freshly collected *L. majuscula* from Kahala Beach was frozen and extracted twice with MeOH and then twice with CHCl₃. Work up of the combined extracts as described above led to the Me ester of 1 as a GLC-pure (10 % SE-30 on Chromosorb P, 240°) colorless oil: IR (CHCl₃) v_{max} 1735, 970 cm⁻¹; PMR (CDCl₃) δ 5.49 (t, C-4) and C-5 methines), 3.67 (s, CO_2CH_3) , 3.33 (s, CCH_3) on C-7), 3.15 (br, p, J = 6-7) Hz, C-7 methine), 2.37 (br, s, C-2) and C-3 methylenes, \rightarrow sharper s on irr. at 5.49), 2.18 (br, t, J = 6-7) Hz, C-6 methylene \rightarrow sharp d on irr. at 5.49 and br d on irr. at 3.15), 1.26 (br) s with low field sh, C-8, C-9 C-10, C-11, C-12, and C-13 methylenes), 0.88 (bt, J = 7) Hz, C-14 methyl); MS m/e (rel. intensity) 271 $(2, M^- + 1)$, 269 (2), 239 (13), 207 (36), 189 (13), 171 (27), 143 (100); high resolution MS m/e 171.102547 (calcd. for $C_9H_{19}O_3$, 171.102123), 143,143454 (calcd. for $C_9H_{19}O_3$, 143.143594).

trans-7(S)-Methoxytetradec-4-enoic acid could be obtained directly from the alga using the following procedure. Freezedried 1. majuscula (1.24 kg), collected at Kahala Beach, Oahu in January 1977, was extracted successively with petrol, CH₂Cl₂. Me₂CO, and isoPrOH to give 1.5, 12, 9.5, and 2.2 g of extract, respectively. The Me₂CO extract was partitioned between EtOAc and aq. 0.2 M NaH₂PO₄. The EtOAc phase was washed with aq. Na₂HPO₄ and evapd to give 6.5 g of oil. Chromatography of 5 g of this oil on 150 g of Si gel gave 360 mg of a dark green oil that was eluted with 10-20% EtOAc in C₆H₆. Gel filtration on a 2.5 cm × 1.9 m column of Sephadex LH-20 with CHCl₃-MeOH (1:1) yielded a fraction (671-694 ml) which contained 290 mg of spectrally pure 1.

Using similar procedures 1. was isolated in 0.02% yield or higher from shallow water varieties of L. majuscula collected at Enewetak and Kwajalein in the Marshall Islands and in the lagoon near Cartwright Point, Fanning Island. Compound 1 was also isolated from a Crinalium sp. collected in the lagoon near the Cable Station, Fanning Island and had $[\alpha]_D^{23.5} - 14.1^\circ$ (CHCl₃, c 0.34).

(B) Malyngamide A. Freeze-dried L. majuscula from Kahala Beach, Oahu was extracted successively with petrol, CH₂Cl₂, Me₂CO and isoPrOH. The CH₂Cl₂ extract (1.52 g) was applied

to a 180 \times 2.5 cm column of Sephadex LH-20 and the chromatogram eluted successively with 645 ml of CH₂Cl₃, hexane (4:1), 630 ml of CH₂Cl₂–Me₂CO(3-2), and 425 ml of CH₂Cl₂–Me₂CO (1:4). After 325 ml of CH₂Cl₂–hexane (4:1) had passed through the column, 11 fractions were collected: A, 325–425 ml, 225 mg; B, 425–470 ml, 208 mg; C (mostly majusculamides [1] by PMR analysis), 470–555 ml, 168 mg; D (mostly majusculamides [1] by PMR analysis), 555–645 ml, 129 mg; E, 645–825 ml, 160 mg; F, 825–925 ml, 58 mg; G, 925–1025 ml, 207 mg; H, 1025–1275, 171 mg; I, 1275–1375 ml, 42 mg; J, 1375–1500 ml, 111 mg; K, 1500–1700 ml, 32 mg.

Chromatography of fraction B (165 mg) on neutral Al₂O₃ (20 g) with CH₂Cl₂-MeOH (49:1) followed by gel filtration on Sephadex LH-20 with CHCl₃-MeOH (1:1), chromatography on Bio-Beads SX-8 with C₆H₆ and HPLC on μ -Bondapak-CN with hexane and 1,2-dichloroethane (43:7) gave 13 mg of malyngamide A as a colorless oil, $[\alpha]_{\rm D}^{25}$ =6.5° (CH₂Cl₂, c 0.77); MS m/e 554 and 552 (M⁺, 1:3 rel. intensity), 517 (M⁺ -Cl), 143: high resolution MS m/e 517.32630 (calcd. for C₂,H₄₅N₂O₆, 517.32777).

(C) Malyngamide B. L. majuscula was collected at Kailua Beach Park, Oahu in February, 1976. The freeze-dried alga (37 g) was extracted successively twice with CHCl₃ and twice with MeOH. The combined extracts were reduced to 2.5 g of a dark green oil which was applied to a column of Si gel (60 g). The chromatogram was developed with hexane, hexane CHCl₃, CHCl₃ and CHCl₃-Me₂CO. Elution with 20-50% Me₂CO in CHCl₃ removed 105 mg of a black tar. Chromatography of this fraction on neutral Al₂O₃ gave, upon elution with CHCl₃-MeOH (97:3), 46.6 mg of a yellow oil. Gel filtration on Sephadex LH-20 with CHCl₃-MeOH (1:1) produced 32.2 mg of malyngamide B as a colorless oil; MS m/e 542 and 540 (M*, 1-3 rel. intensity), 505 (M* - Cl); high resolution MS m/e 540.2949 (calc. for C₂₈H_{4.8}N₂O₆, ³⁵Cl, 540.2967).

540.2949 (calc. for $C_{28}H_{4.5}N_2O_6$) $^{3.5}Cl$, 540.2967). (D) Malyngamide C. Wet L. majuscula, collected in shallow water near Cartwright Point, Fanning Island in April, 1977 was extracted with MeOH and CH_2Cl_2 . The extracts were combined and evapd and the residue distributed between EtOAc and H_2O . Evapn of the EtOAc layer gave an oil (72 g) which was distributed between n-hexane and MeOH- H_2O (9:1). The MeOH- H_2O layer was then adjusted in concn to 3:1 and extracted with CCl_4 , and finally to 65:35 and then extracted with $CHCl_3$. The $CHCl_3$ extract was evapd to give 358 mg of an oil which was then subjected to gel filtration on a 2.5 cm \times 1.9 m column of Sephadex LH-20 with $CHCl_3$ -MeOH (1:1) The fraction eluted from 555 to 607 ml contained 205 mg of spectrally pure malyngamide C, $[x]_0^{2.3.5} - 19.6$ ° ($CHCl_3$, c 1.4); MS m/e 457 and 455 (M 4 , 1:3 rel. intensity), 420 (M 4 - Cl), 315 and 313 (1:3 rel. intensity), 143: high resolution MS me 313.10962 (calcd. for C_1 , H_2 0, NO_4 35 Cl. 313.10809), 143.14359 (calcd. for $C_9H_{19}O$,143.14359).

Ozonolysis of 1 A soln of 1 (40 mg) in 15 ml MeOH was treated with excess O_3 for 30 min at -70° . The reaction mixture was added to 7 ml of HCO₂H and 3.5 ml H₃O₂. After a 30 min reflux, the soln was evapd and the residue distributed between dil HCl and CHCl₃. The acidic material in the CHCl₃ layer was transferred into NaHCO₃ and after acidification back into CHCl₃. Evapn of the dried CHCl₃ layer gave 8.5 mg of 3-methoxydecanoic acid (2) as a colorless oil. [α]₀ +8.2° (CHCl₃, c 0.85); PMR (CDCl₃) δ 0.88 (br t, J = 7 Hz, 3H), 1.24 (br s, 10H), 1.51 (br m, 2H), 2.53 (d, J = 6 Hz, 2H), 3.39 (s, 3H), 3.64 (br p, J = 6 Hz, 1H), 6.6-8.2 (br, 1H); MS m/e (rel. intensity) 203 (4, M +1), 201 (3), 143 (71), 103 (100); high resolution MS m/e 203.16475 (calcd. for C₁₁H₂₃O₃, 203.16473). (Found: C, 65.4; H, 11.0 Calcd for C₁₁H₂₂O₃; C, 64.9; H, 10.8° $_0$)

Alkaline hydrolysis of malyngamide A. The compound (25 mg) was suspended in 20 ml of 10% KOH in EtOH-H₂O (4·1) and the stirred mixture refluxed for 15 hr. The hydrolysate was concd in vacuo and distributed between H₂O and CH₂Cl₂. The aq. layer was separated, acidified and extracted with CH₂Cl₂ to give 9.5 mg of a brown oil. Gel filtration on Sephadex LH-20 with CHCl₃-MeOH (1:1) yielded 4.5 mg of 1 as a colorless oil, $[\alpha]_2^{26} = 10.0^{\circ}$ (CHCl₃, c.0.5).

Acid hydrolysis of malyngamide C. A mixture of the compound (56 mg) in 5 ml of 2 N HCl and 5 ml MeOH was refluxed for 2 hr under N_2 . H_2O was added and extraction with CHCl₃ gave 38 mg of an oil from which 4 mg of 1, $[\alpha]_D^{24} - 10.0^{\circ}$ (CHCl₃, c 0.4), and 15 mg of the corresponding Me ester were obtained after gel filtration on Sephadex LH-20.

Methylation of ricinoleic acid. The acid (218 mg) and NaH (750 mg of a 50% dispersion in mineral oil) were dissolved in 5 ml DMF. MeI (1 ml) was added to the stirred soln under N_2 and the soln was warmed to 40° for 24 hr. A second 1 ml aliquot of MeI was then added. After an additional 18 hr stirring at room temp., the mixture was diluted with 10 ml H₂O₂ acidified and extracted with CHCl₃. Evapn of the CHCl₃ soln left a brown oil which was chromatographed on Si gel (20 g). Elution with CHCl₃-MeOH (49:1) gave 50 mg of O-methylricinoleic acid as a colorless oil, $[\alpha]_D^{24/5} + 10.2$ (CHCl₃, c 3 1), PMR (CDCl₃) δ 9.94 (bs, CO₂H), 3.34 (s, OMe), 3.17 (m, C-12 CH).

3(R)-Methoxynonanous acid. Ozonolysis of 35 mg of Omethylricinoleic acid and oxidative workup produced 13 mg of 3(R)-methoxynonanoic acid as a colorless oil, $[x]_0^{2.5} = 7.3^{\circ}$ (CHCl₁, c 1.2); PMR (CDCl₃) δ 3.67 (m, C-3 CH), 3.41 (s, OMe).

Demethylation of 1. To a stirred soln of 153 mg of 1 in 4 ml of ethanethiol was added 0.5 ml of BF₃-etherate [11]. After stirring at room temp, for 4 days, 10 ml of H₂O was added and the suspension was extracted with CHCl₃ (6 × 5 ml). The combined CHCl₃ extracts were dried (Na₂SO₄) and evapd to give 175 mg of brown oil. A portion (199 mg) of this oil was chromatographed on Si gel (18 g). Elution with CHCl₃-MeOH (97:3) separated 49 mg of unreacted 1 from 83 mg of crude trans-7(S)-hydroxytetradec-4-enoic acid (3) Purification of the yellow, oily 3 with activated charcoal gave 64 mg of a colorless solid which after two recrystallizations from pentane had mp 41-42.5°; $[\alpha]_{2}^{2b}$ +2.5° (CHCl₃, c 2): PMR (CDCl₃) δ 643 (bs. 2OH), 3.59 (m, 1H). (Found C, 69.3: H, 10.8. Calcd. for C₁₄H₂₆-O₃: C, 69.4: H, 10.8%).

3(S)-Hydroxydecanoic acid (4). Ozonolysis of 43 mg of 3 as described above gave 9.6 mg of a colorless oily solid Recrystallization from pentane gave 4 as a white granular solid, mp 43-44°, $[\alpha]_D^{2.5}$ +17.5° (CHCl₃, c 0.4); $[\alpha]_D^{2.5}$ -16.6° (EtOH, c 0.4), PMR (CDCl₄) δ 5.10 (bs. OH and CO, H), 4.01 (bm, C-3 CH).

Identification of cyanophytes. The filamentous blue-green alga from Reefer 8 pinnacle at Enewetak Atoll in the Marshall Islands has been previously identified as Lynghya gracilis Gomont [10]. A re-examination of this cyanophyte shows that its morphology does not agree with the published description of L. gracilis from Enewetak [12]; however, it is entirely consistent with descriptions of L. majuscula Gomont [13, 14]. All other cyanophytes used in this study were identified by comparing morphological features with published descriptions [14] Voucher specimens of all algal collections have been retained.

Acknowledgements Financial support by the National Science Foundation (CHE76-82517) is gratefully acknowledged. The authors thank Dr. Peter Roller, National Cancer Institute, for determining the high resolution MS of malyngamides A and B. We thank Dennis Russell, Department of Botany. University of Hawaii for identifying the algal specimens. The algal collection at Enewetak was supported by ERDA contract AT(26-1)628. The authors thank Dr. Martin J. Vitousek for his assistance in collecting algae at Fanning Island

REFERENCES

- Marner, F-J., Moore, R. E., Hirotsu, K. and Clardy, J. (1977) J. Org. Chem. 42, 2815
- Marner, F-J., and Moore, R. E. (1978) Phytochemistry 17, 553
- 3 Levene, P. A. and Marker, R. E. (1933) J. Biol. Chem. 102, 297.

- 4. Celmer, W. D. (1966) J. Am. Chem. Soc. 88, 5028.
- 5. Serck-Hanssen, K. (1957) Arkiv Kemi 10, 135.
- 6. Serck-Hanssen, K. (1958) Chem. Ind., 1554,
- 7. Baker, C. D. and Gunstone, F. D. (1963) J. Chem. Soc., 759.
- 8. Rose, A. F., Scheuer, P. J., Springer, J. P. and Clardy, J. J. Am. Chem. Soc. (in press).
- Scheuer, P. J. (1977) Accounts Chem. Res. 10, 33.
 Mynderse, J. S., Moore, R. E., Kashiwagi, M. and Norton, T. R. (1977) Science 196, 538.
- 11. Node, M., Hori, H. and Fugita, E. (1976) J. Chem. Soc. Perkin Trans. 1, 2237.
 12. Dawson, E. Y. (1957) Pac. Sci. 11, 92.
- 13. Dawson, E. Y. (1954) Pac. Sci. 8, 373.
- Desikachary, T. V. (1959) in Cyanophyta, p. 313. Indian Council of Agricultural Research, New Delhi.